AGNI: A Multi-threadedMiddlewarefor DistributedScripting

M.Ranganathariylarc BednarekFernandPorsand
DougMontgomery
InternetworkingTedhnologiesGroup
National Instituteof Standadsand Technology
100BureauDrive, Gaitherskurg, MD 20899.
{mranga,bednaek,pors, dougn} @antd.nist.go

Abstract

We presenthe designof a AGNI - a Tcl 8.1 basedMiddle-
ware for building reactive extensible reconfiguable dis-
tributedsystemshaseduponan abstractionwecall Mobile
Streams.Using our systema distributed, event-drivenap-
plication canbe scriptedfroma singlepoint of control and
dynamicallyextendedand re-configued while it is in exe-
cution. Our systemis suitablefor building a wide variety
of applications;for example distributedtest,confeencing
and contmol-orientedapplications. We illustrate the useof
our systenby presentingexampleapplications.

1 Intr oduction

Ourwork is motivatedby a coupleof obsenationsaboutthe
evolving natureof distributedapplicationsandtheirimple-
mentationenvironments. First, the structureof distributed
softwareis undegoing somechanges.We are seeingthe
growth of new typesfederated|ooselycoupleddistributed
applicationsthat have several commonrequirementsand
characteristicsncluding: (1)Event-driven Ar chitecture:
A singledistributed applicationmay be composedf sep-
aratecomponentghat all work togetherin a coordinated
fashion. Suchapplicationsare event-orientedn naturein
that we can think of changesin the overall state of the
global applicationas being triggeredby discretechanges
in the stateof eventprocessingt eachof the components.
(2)Heterogeneity: The componentsnustrun on a vari-
ety of differentplatformswith varyinginherentcapabilities
andervironments.In addition,someof componentshem-
selesarereusedpiecesof softwareimplementedn avari-

ety of languagesndenvironments.Despiteall of this het-
erogeneityit is desirableto be ableto designanddevelop
distributed applicationsin a commonportableframenork.
(3)Mobility: Theability to dynamicallymove codeto and
amongtheseplatformsduringapplicationexecutiongreatly
enhancetheability to deploy andreconfigurecomplex sys-
tems.(4)Reliability: Theseextensionandreconfiguration
capabilitiescan be usedto constructreliable systemshat
distribute systemstatein waysthat enablegracefulfailure
recovery and adaptation.(5)Security: In suchhighly dy-
namic systemsthe ability to secureand control resources
at several levels (global application,single node, individ-
ual process)s necessaryo insurethe correctbehaior of
applicationsandtheviability of systemghatsupportthem.

Our secondobsenation is that while mary systemsshare
the characteristicenentionedabove, the variety of compo-
nenttypesand platformsthat mustbe accommodategre-
clude a languagespecificor applicationspecificsolutions.
Insteadwe suggesthata Middlewareapproactbasedipon
Tcl scriptingtechnologyprovidesthe mostflexibility in the

designof suchcompositeapplications.Tcl is great’com-

ponentglue”. Its simplified structureand extensibility are
strengthsvhenassemblingpplicationdrom disparatehet-

erogeneousoftwarecomponents.

This paperis aboutAGNI - a multi-threadedrcl 8.1 based
Middlewarefor scriptingreconfigurablevent-orientedlis-
tributed systems. AGNI builds uponthe proven scripting
power of Tcl by addingextensiondor anabstractiorwe call
Mobile Streams. Mobile Streams(MStream$ are a gen-
eralizationof simple mobile codetechnologieqe.g. Java
Applets)that provide codedistribution andcommunication
betweerclientsandseners.MStreamsxtendtoday’s sim-
ple notionsof codemobility by incorporatingstatemonbility,
decentralizepeerto-peercommunicationsandthe ability
to extendandreconfiguredistributedapplicationduring ex-
ecutionwhile preservingoehaioral guaranteesAt ahigher
level, MStreamsallow theseparatiorf thelogical structure

Indeedthusspale JohnOusterhout "If youlook atfinancialservices,
alot of whatthey dois try andtie togetherall of thedifferentsystemshat
needto be coordinatedwith traders,not to mentionthe front and back
office. It's a tremendousntegration effort, and that’s exactly what Tcl
doeswonderfully..”.

of adistributedapplicationfrom the physicalplacemenbf
componentsOur modelof codemobility allows the map-
ping of logical applicationstructureto physicalresources
(e.g. machinesand processesjo occurdynamicallyat run
time andchangeduringthe courseof the active life-time of
theglobalapplication.

The restof this paperis organizedasfollows: Section2
presentshe MStreamgrogrammingmodelandsystemar-
chitectureandpresentanintroductoryexample. Section3
givesabrief overview of AGNI, our prototypeimplementa-
tion of MStreamsMiddleware. Section4 presentsa sim-
ulation environmentfor designingapplicationsusing our
system. Section5 presentssomemore comprehensie ap-
plicationsthat we have built on our system. In Section6
we compareandcontrastour work with thoseof others.In
Section7 we concludeandpresenbur future plansfor this
project.

2 Mobile Streams

In this sectionwe presenbur programmingmodelandpro-
vide a small,introductoryexample.We begin by introduc-
ing afew termsthatareusedthroughtherestof the paper

A Mobile Steam (MStream) is a mobile communication
endpointin a distributed system. The closestanalogyto
an MStreamis a mobile active mailbox. As in a mailbox,
an MStreamhasa globally uniguename. MStreamspro-
vide a FIFO ordering guarantee gnsuringthat messages
areconsumedt the MStreamin thesameorderasthey are
sentto it. Usually mailboxesarestationary MStreamspn
the otherhand, have the ability to move from Siteto Site
dynamically Usually mailboxesare passie. In contrast,
messagarrival atan MStreampotentiallytriggersthe con-
currentexecutionof messageonsumptioreventhandlerg
AppendHandlers) registeredwith the MStreamwhichcan
procesghe messageand,in turn, send(append messages
to otherMStreams.

An MStreamhasa globally uniquename. We referto ary
processothatsupportsaanMStreamexecutionenvironment
asa Site A distributed systemconsistsof one or more
Sites. A collection of Sitesparticipatinga distributed ap-
plication is called a Session Each Sessionhasa distin-
guishedtrusted reliableSitecalleda Sessioeader Each
Site is assignedh Location Identifier that uniquely identi-
fiesit within a givenSessionNew Sitesmaybe addedand
removed from the Sessiorat ary time. An MStreammay
be locatedon, or movedto ary Sitein the Sessiorthatal-

SESSION

SITE

A

MStream [MStream] [MStream]

AGENT AGENT AGENT

AGENT || AGENT || AGENT

AGENT

Handler | [Handler|| Handler || Handler Handler Handler | | Handler

Handler | [Handler || Handler|| Handler Handler briefcasd |briefcasd

Handler|| Handler

briefcasq Handler
Thread

Interp

Handler

Thread Thread

priefcasq priefcase

Thread

Handler briefcasq
riefcase

Thread

Interp Interp

Thread Thread

Interp Interp Interp

Interp

Figure 1: Logical organizationof the System. A Ses-
sion consistsof multiple participatingSites. EachSite can
housemultiple MStreams.EachMStreamcan have multi-
ple Agentsthat canregisterHandlersfor differentEvents.
MStreamscanmove from Site to Site. Whenan MStream
moves,all its registerechandleramove with it.

lows it to residethere.MStreamsmaybe openedik e sock-
etsandmessagesent(appendedjo them. Multiple Event
Handlers(Handlers) may be dynamicallyattachedto and
detachedrom, an MStream. Handlersareinvoked on dis-

cretechangesn systemstatesuchasmessagelelivery (ap-

pend),MStreamrelocationsnew Handlerattachmentsien

Site additionsand Site failures. We refer to thesediscrete
changesn systemstateasEvents.Handlersareattachedy

Agentswhich provide anexecutionervironmentandthread
for the Handlersthat they attach. (i.e. an Agentspecifies
acollectionof Handlersthatthatall usethe samethreadof

executionandinterpreter) Logically, the systemis struc-
turedasshown in Figurel.

Handlerscan communicatewith eachother by appending
messagew MStreams.Thesanessagearedeliveredasyn-
chronouslyto the registeredAppendHandlersin the same
orderthatthey wereissued®. A messagés deliveledatan
MStreamwhenthe AppendHandlersof the MStreamhas
beenactivatedfor executionasa resultof the messageA
messagés consumedvhenall the AppendHandlersof the
MStreamthat are activatedas a resultof its delivery have
completedexecution. By asyntironousdeliverywe mean
that the senderdoesnot block until the messagéiasbeen
consumedn orderto continueits execution.

2Synchronouslelivery of messageis supportedisanoptionbut asyn-
chronoudelivery is expectedto bethe commoncase.

Site 1 Site 2
Append b Append
foo Handler bar Handler

a

External Input
stream_open foo
stream_append foo"Hello world" ;#a

stream_create foo
stream_create bar
register_agent foo {} {
stream_open bar
on_stream_append L
stream_append bar $argv ;#b

}
}
register_agent bar {} {

on_stream_append {
puts $argv
stream_relocate 1 ;#c

}
on_stream_relocation {
set my_loc [stream_location]
puts "I'am at $my_[oc" ;#d
}
}
stream_move foo 1
stream_move bar 2

Figure 2: A simple auto-reconfiguringreactive system
scriptedfrom a singlepoint of control.

A distributed applicationis constructedy first specifying
the communicationend-pointsas MStreamsand then at-
tachingAgentsto thoseend-pointsthatin turn attachHan-
dlersfor specificEvents.A givenMStreammay have mul-
tiple AgentsandeachAgentmay registerHandlersfor dif-
ferentEvents,but eachAgent may have only oneHandler
for a given Event. Whenan Eventoccurs,the appropriate
Handlersn eachAgentareconcurrentlyandindependently
invokedwith appropriatearguments Handlersaretypically
registeredon Agentinitialization andmay be dynamically
changedluringexecution.

An applicationbuilt usingour Middleware,maybethought
of asconsistingof two distinct parts- an active partanda
reactve part. The reactve part consistsof MStreamsand
Handlers.Theactive partor Shelllivesoutsidethe Middle-
wareanddrivesit. A Shellmay connecto the Middleware
andissuerequestand may exit at ary time. Thereactive
partis persistent.

Figure2 showvs anexamplescriptthatinstantiatesa simple
distributedsystemthatresidesat Sitesl and2. A message
is sentto the MStreamcalledfoo by thest r eamappend

commandssuedviatheexternalShell(#ain Figure2) . The
MStreamcalled foo receves the messag€Hello world”
and sendsit to the MStreamcalled bar (#b in Figure 2)
which outputsthe messageia its handlerandthenmoves
MStreambar to Site 1 (#c in Figure2). The arrival han-
dlersrun whenthe MStreambar arrivesat Site 1, printing
the string "l amat 1” to the consoleat Site 1 (#d in Fig-
ure2).

In Figure 2 the script labelled "External Input” in is the
Shell and MStreamsand their registeredhandlersare the
reactve parts.

2.1 Dynamic Extensionand Re-configuration

An applicationbuilt on our Middleware may be dynami-
cally extendedandre-configuredn severalwayswhile it is

in execution(i.e.,while therearependingun-deliveredmes-
sages)First,anAgentcandynamicallychangehehandlers
it hasregisteredfor a given Event. Second,nev Agents
may be addedand existing Agentsremoved for an exist-

ing MStream.Third, nev MStreamsmay be addedandre-

moved. Fourth, new Sitesmay be addedandremoved,and
finally, MStreamamay be moved dynamicallyfrom Siteto

Site.

WhenanMStreammovesfrom oneSiteto anotherit (log-

ically) movesthe codeof all of the Agentsattachedto it

to the new Site alongwith whatever statethey have placed
in their briefcase structures.We say an Agent "visits” a
Sitewhenits MStreamvisits the Site. Whenan Agentfirst

visits a Site, its initialization codeexecuteghereandwhen
anAgentis killed, its (optional) Finalization Handlerruns
at eachlocation that hasbeenvisited by it. Agent state
(consistingof global statevariablesandcode)is replicated
at eachsite thatit visits until the Agentis destrged. On
AgentdestructiontheHandlershatit hasregisterecarede-
registeredandtheinterpreterandstatevariablesarefreedat
eachSitethatit hasvisited. We assumehat Sitesmay fail

or disconnectduring execution. Site failure doesnot im-

ply destructionof the MStreamsthat residethere. Failure
processings describedn Section2.3.

The Agent’s briefcasespecifiesa consisteng requirement
for moves.WhenanAgentmovesfrom Siteto Siteonly the
elementsn the briefcasearecopiedfrom the sourceexecu-
tion ervironmentto thetarget. Theremainderof the global
stateremainsunafected(and cached)at the sourcesite of
themove. Onsuccessfutompletionof a move, the Arrival
Handlers of the MStreamareinvokedatthe new Sitewhere
the MStreamhasmoved.

HandleranaymovetheMStreamto whichthey areattached
andalsomaymove otherMStreamsaroundaswell ascreate
anddestry MStreamsHandleramayalsoexit - destrging

the Agentin which they are housedand may alsodestry

other Agents. Suchactionsmay also be initiated from an

externalShell. Re-configurationrmaybe containedy using

appropriatepolicy handlers.

All changesn the configurationof an MStreamsuchas
MStreammovementnew Agentadditionanddeletion,and
MStreamdestructionare deferreduntil the time whenno
Handlersof the MStreamare executing. We call this the
AtomicHandler ExecutionModel. Messagealelivery order
is presereddespitedynamicreconfigurationallowing both
thesendemndreceierto bein motionwhile asynchronous
messagearependingdelivery.

Applicationshbuilt using Mobile Streamscan be extended
from multiple points of control; any handleror Shell that
hasacquiredan openMStreamhandle,can attemptto re-
configureor extendthereactive partof thesystemandthese
actionscanoccurconcurrently While this addsgreatflex-
ibility, it also raisesseveral security and stability issues.
We provide a meansof restricting systemreconfiguration
and extensionusing control Eventsthat caninvoke policy
Handlers. Thesepolicy Handlersmay be registeredonly
by privilegedAgentsasdescribedoelov. We follow a dis-
cretionarycontrol philosophyby providing just the mech-
anismandleaving the policy up to individual applications.
Controlsmay be placedvia policy Handlersat a session-
wide level, site-wide level and at the level of individual
MStreamdor varioussecurity-relgantEvents.

In summaryour securitymechanismsrebasedon thefol-
lowing threeprinciples:

Session-widecontrol: We have built mechanismso place
session-widecontrols over extensionand reconfiguration
via acentralizedSessiorLeaderMStream.

Site-specificcontrol: Eachsite may specifysecuritypoli-
ciesvia a Site Contoller MStream. Site-specificpolicies
may be usedto grantor dery MStreamentryto a site and
to sand-boxheincomingMStreamhandlerscodeby using
safe-Tclmechanisms.

Stream-specifiaccontrol: TheMStreamitselfis regardedas
anextensibleentity to which Agentscanbeattachedindde-
tached.lt cancarryits own policy Handlerso allow or dis-
allow suchactions,asdeterminedoy its SteamContmoller
Agent.

Our securityimplementationworks as follows: Messages
areclassifiedasdatamessageandcontrolmessagesData
messagesare delivereddirectly to the MStream. Control
messagesre messageshat can changethe configuration
of the distributed system. Theseare routedfirst through
the trustedintermediarySession_eaderthat canacceptor
dery theseactionsvia its policy handlersandthenthrough
the Site Controllerwhich may againacceptor dery theac-
tion andfinally throughthe StreamControllerfor MStream-
specificactions. We invite the interestedreaderto look
at[9] for moredetails.

The mechanismslescribedabove permitusto build highly
flexible andextensibledistributedreactive systemghatare
able to extend and re-configurethemseles, and also to
placeconstraintson how the systemcanbe re-configured
andextended.

2.2 MessageDelivery

Within our Middleware framawork, point-to-point mes-
sagesaredeliveredusinganin-ordersendeireliabledeliv-
eryschemébuilt ontop of UDP. All messageareconsumed
in the orderthey areissuedby the senderdespitefailures
andreconfigurationsTheseorderinganddelivery guaran-
teesmalke it simplerto designdistributedsystems.

In our schemethe senderof the messagés responsibldor
re-transmittingthe messagen timeout. We usea sliding-
window acknavledgemenmechanisnsimilarto thoseem-
ployed by TCP. The sendingSite buffers the messageand
computesa smoothedestimateof the expectedround-trip
time for theacknavledgmento arrive from therecever. If
the acknavledgmentdoesnot arrive in the expectedtime,
the senderre-transmitsthe message.The senderkeepsa
window of unacknevliedgedmessageandcontrolsflow by
dynamicallyadjustingthe width of this window depending
uponwhetheran ACK wasrecevedin the expectedime or
not. Thusfar, our descriptionis similar to the mechanisms
employedby TCP. We have implementedbur own protocol,
ratherthanjustuseTCR, becausd CPdoesnotaddresser
tainconditionssuchasfailuresabovethetransportevel and
dynamicmovementof the communicatingend-points.

As previously describedanapplicationcanbe dynamically
reconfiguredat ary time with both the senderandrecever
moving. Whenmovementof an MStreamoccurs,a Loca-
tion Manager is informed of the new Site locationwhere
the MStreamwill reside. This information needsto be
propagatedo eachHandleror Shell that has openedthe
MStream.

Whenthe target of an Appendmoves, messagethat have
not beenconsumechave to be deliveredto the MStream
at the new Site. Therearetwo designoptionsin dealing
with this problem- eitherforward un-consumednessages
from the old Site to the new Site or re-deliver from the
sendeto thenew Site. Forwardingmessagebassomeney-
ative implicationsfor reliability. If the Site from which the
MStreamis migrating dies beforebufferedmessagebave
beenforwardedto the new Site, thesemessagewill be
lost. Hence,we optedfor a sendefinitiated retransmission
schemeThesendebuffersthemessagentil it recevesno-
tification thatthe handlerhasrun andthe messagéasbeen
consumedre-transmittinghe messagen time-out.

When an MStreammovesit takes various stateinforma-
tion alongwith it. Clearly, thereis animplicit movement
of handlercode and Agent execution state(via the brief-
case),but in addition,the MStreamtakes a statevector of
sequencewumbers. Thereis a slot in this vectorfor each
"alive” MStreamthatthe MStreamin motionhassentmes-
sagedo or receved messagefrom. Eachslot containsa
sent-receied pair of integersindicatingthe next sequence
numberto be sentor recevedfrom a givenMStream.This
allows the messagingodeto determinehow to stampthe
next outgoingmessager whatsequencaumbershouldbe
consumedaext from agivensendingMStream.

2.3 Handling Failures

A failure occurswhen the Site where the MStreamre-
sidesfails or disconnectdrom the SessionLeader Each
MStreamis assignedreliableFailure Manager Site. When
a sucha failure occurseachof the MStreamslocatedat
the Site that hasfailed are implicitly relocatedto its Fail-
ure ManagerSite whereits Failure Handlersare invoked.
Failuresmay occurandbe handledat ary time - including
during systemconfigurationand reconfiguration.Pending
messagesre deliveredin order, despitefailures. A mes-
sages consideredconsumedonly afterall of the Append
handlersxecuteatthetargetMStreamfor thatmessage(|f
noneexist the messagés discardedat therecipient).If the
Site housingan MStreamshouldfail or disconnectwhile
a messagés beingconsumedr while therearemessages
that have beenbuffered and not yet delivered, re-delvery
is attemptedat the MStreamFailure Manager To ensure
in-order delivery in the presenceof failures,the message
is discardedat the senderonly after the AppendHandlers
at the recever have completedexecutionandthe ACK for
the messagdasbeenreceved by the sender This is dif-
ferentfrom TCPwheretherecever ACKsthe messagém-
mediatelyafter reception(andnot after consumptioraswe

require). After a failure hasoccurredat the site wherean
MStreamresides,a failure recovery protocol is executed
thatre-synchronizesequenc@umbershetweercommuni-
catingMStreamshatinvolve the failed MStream.Eachof
the potentialsenderss queriedto obtainthe next expected
sequenc@&umber FIFO orderingcanbethusbe presered
despitethefailure.

3 Implementation

We have implementedthe Mobile Streamsmodel in a
toolkit we call AGNI 2 . AGNI is amulti-threadedr CL ex-

tensionthatusesthe thread-safetyeaturesof TCL 8.1and
consistsof roughly 23,000lines of C++ code. In this sec-
tion, we give highlightsof the implementatiorsomeinitial

performanceesults.

Each workstation that wishes to participatein the dis-
tributed systemrunsa copy of an Agent Daemon A dis-
tinguishedAgent Daemonhouseshe SessionLeaderand
is in chaige of acceptingor rejectingnew AgentDaemons.
This Daemonalsosenesasa LocationManagerandFail-
ure Managerfor all MStreamsn the Session.EachAgent
Daemorhasauniqueidentifierthatit obtainsfrom the Ses-
sion Leader EachAgent Daemonmaintainsa connection
with the Sessior_eaderAgentDaemon.Conceptuallythe
arrangemenis asshavn in thefigure 3.

EachAgenthasa TCL interpreterandthreadof execution
that is usedby the Handlersthat it registers. Thesere-
sourcesare createdfor an Agent at a Site on its the first
visit to the Site and remainsallocateduntil the Agent (or
the MStreamto which it is attached)s destryed. Whena
new Agentis addedto an MStream,its codeis propagated
and initialized on the first move of the Agentto a previ-
ouslyurvisited Site,andremainscachedhereuntil it is de-
stroyed. ProvidedanMStreamhasvisiteda Site previously,
andno new Agentshave beenattachedsinceits last visit,
MStreammovementsimply consistoof moving the statein-
formationin the briefcase(seeSection2) of eachAgent
of the MStreamto the new Site and concurrentlyinvoking
eachon_streamarrival Handler

Exceptfor the casewhenthe MStreamis co-locatedwith

the Site from where the messageoriginates, all control
Events destinedfor an MStream (e.g. creation, reloca-
tion, new agentattachmentparedeliveredthroughthe Ses-
sion LeaderAgent Daemonvia the TCP connectionthat

3"AGentsatNIst” (alsoSanskritfor fire)

SESSION LEADER

TCP Connection for control messages

Agent Daemol
Agent Daemo

Reliable UDP-based protocol

Agent Daemon

Figure 3: Each Site runs an Agent Daemonthat is con-
nectedo the SessiorLeader The AgentDaemonis Multi-
threadedwith one threadper agent. The SessionLeader
maintaindocationandcacheinformation.

eachAgentDaemonmaintainswith it. The SessiorLeader
Agent Daemonalso actsas a Location Manager keeping
trackof whereeachMStreamis locatedandis henceableto

re-directmessage® thelocationof the MStream.Sending
all control Eventsthroughthe SessionLeaderis a simple

meansof achieving a global orderingon controlmessages.

Thenegative aspectf thisdesignis thatthe Sessioreader
hasthe potentialof becominga bottleneck. However, we
expectthe numberof controlmessaget be muchsmaller
thanthe numberof datamessagegappendsprocessedby
the MStreamandhencedo not considerthis a seriouslim-
itation at present.In our future work, we planto alleviate
this problemby replicationof the SessiorLeader The Ses-
sion LeaderDaemonalso manageghe tracking informa-
tion for the codeand statecachedescribedpreviously and
is chage of propagating-odeto previously urvisitedloca-
tions. As all Agentcodeis registeredatthe SessiorL.eader
and propagatedrom there, this simplifies the trust model
to pairwiserelationshipdetweereachsiteandthe Session
Leader providedall partiestrustthe SessiorLeader

Appended data messagesare delivered to the destina-
tion MStreamdirectly without going throughthe Session
Leader Thusthe SessionLeaderis not a bottleneckfor

datamessagelelivery.

4 An In-Situ Simulation Envir onment

Estimatingthe detailedbehavior andperformanceof a dis-
tributedsystemis hard. Thereare several degreesof vari-
ability andtheinteractionbetweerphysicaleffectsis often
difficult determine Further bugs- especiallytiming related
onescanbe quitedifficult to reproducen physicaltest-bed

ervironments. In orderto addressheseissues,we have

developedan in-situ simulationervironmentthat enables
tuning, deluggingand performanceestimationof both the

AGNI runtimesystemandapplications.

Our approach system wraps a simulated ervironment
aroundthe actualAGNI systemandapplicationcodeusing
the CSIM [11] simulationlibrary. We replacethreadcre-
ations,locking and messagesendsand receives with sim-
ulatedversionsof thesebut leave the restof the codeun-
modified. We have usedthe simulationfor detuggingand
performanceuningthesystemaswell asfor testingtheper
formanceof applicationsbuilt on top of our system. Fig-
ure 4 shaws the simulationcodefor the introductory ap-
plication presentedn section2. As canbe seenfrom the
example,the simulationandthe actualsystemscript look
quite similar, with the exceptionof the parameterst the
top andsomenen commanddo createsimulatedprocesses
andshells. The simulationrunsasasingleprocesavhereas
the actualsystemconsistsof multiple communicatingoro-
cessesThesimulationcontainsvarious”tweaking” param-
etersthat have to be adjustedto matchreality. Thesepa-
rametersncludethe messagdatency, packetdrop percent-
ageandsimulateddelayscorrespondindgo codeexecution
time. Thegoalin tuningthesimulationis to adjustthesepa-
rametergo make the simulationmatchthe behaior of the
real systemfor the quantitiesof interest. Presumablywe
can matchtheseover somesimple scenariosand thentry
morecomplex ones,having someassurancef the validity
of results. Onecanget a goodideaaboutwhat delaysare
significantby looking at the gprof executiontracefor the
actualsystem.

A simulationis, however, only goodto theextentit matches
reality. Fitting the simulationto reality involvesseveral cy-
clesof adjustingperformanceparameterandre-testingthe
simulation.Thereis alarge degreeof variability in the per
formanceof the actualsystem.We aim to make the output
of the modelfall within one standarddeviation of the ac-
tual systemfor the quantitiesof interest. To testif this is
feasible,we testedsomesimplescenariosin boththereal
and simulatedervironments,we emulatedpaclet drop by
randomlydroppingpacletsat the recever. The quantities
of interestthat we would like to matcharethe throughput
of paclketsandthe numberof pacletssentby the sendeifor
eachpacletconsumedy therecever (pacletratio). While
we arestill in the procesf tuningthe simulation,our ini-
tial resultsare encouraging.Figure 5 shawvs the message
countperformancef therealsystemandsimulatedsystem
for two fixedend-points.

set drop 10

set nD [machine nD] ;#1

set ml [machine ml]

set e0 [create_engine $nD -d $drop] ;#2

set el [create_engine $nl -d $drop]

simset_send_|l atency nD .0005 ;#3

simset_send_|l atency mL .0005

si m set_execution_tine "Tcl _FindHashEntry" 0.000015 ;#4
si m set_execution_tinme "Tcl _NextHashEntry" 0.000015

sim set_execution_tinme "Arrival" 0.000015 ; #5

create_shell $e0 {

streamcreate foo

streamcreate bar

regi ster_agent foo {} {
stream open bar
on_stream append {

stream append bar $argv

}

regi ster_agent bar {} {
on_stream append {
puts "$argv"
streamrelocate 1

on_streamrel ocation {
puts "I amat [stream.l|ocation] at [simclock]"
concl ude_sim
}
}
stream nove foo 0
stream nove bar 1
stream append foo "bar"

}
si m 100000

Figure4: Simulationscriptfor introductoryexample.

T

real ——

real top standard deviation --------

real bottom standard deviation -
4 simulated &

Ratio messages sent/messages consumed

0
0 5 10 15 20 25 30
Packet drop percentage

Figureb5: Simulatedversusactualpacletratiofor fixedend-
points.

25000 ‘ ‘
real —«—
real top standard deviation ---—-----
real bottom gtandard deviation -
20000 | simulated —-a-- |

15000
10000

5000

Time per sent message (microseconds)

0 i L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
Packet Drop Percentage

Figure 6: Simulatedversusactual messageconsumption
time for fixedend-points.

5 Application Sketches

In building applicationausingourinfrastructureve adopted
a problem-drven approachin mappingAGNI capabilities
to prototypesolutions. For example, we startedwith the

assumptiorthat we would use mobility only to the extent
that it simplified the applicationdesignor enhanceder

formancein somefashion,ratherthanadoptthe approach
thatmobility is afeaturewhoseutility neededo bedemon-
strated.Theremaindeof this sectionoutlinesthe designof

two applications Theinterestedeadeiis referredto [9] for

additionalexamples.

5.1 Distributed Data Combination

Consideradistributedexperimentwheredatais beinggath-
eredat multiple sitesanda queryinvolvespicking up data
itemsfrom eachlocationandcombiningthe datato produce
a compositeresult. Suchan applicationmay be structured
asamastersenerfront endanda multiple slave backends.
The front endgetsthe queryandfarmsit out to to eachof
the participatingsites. The slave sitesprocesssub-queries
locally, gatheringresultsandreturningthemto the master
site which thenreturnsthe combinedresultto the remote
caller. If thecombinationoperations aninvolvedonesuch
asa databaséoin, this could placean excessve burdenon
the master Alternatively, this operationcould be offloaded
to the client or one of the slaves. Whenthe queryis re-
ceived by the mastey it createsan MStreamat the client or
oneof the slavesto receve datafrom the datasourcesand
andprocesghejoin.

If the data can be shippedincrementallyfrom the data
sourceandresultscanbe producedncrementally the op-

erationthatrecevvesresultscanbe moved dynamicallybe-
tweentheslavesandtheclientdependingnavailableband-
width and other machineresources.Suchtechniquesare
useful for optimizing dynamic query executionin client-

sener databaseystems.The orderingguarantegrovided
by MStreamsensureghat the incrementaljoin resultsare
recevedin orderby thejoin operatorandthe outputoper

atorregardlesof the physicallocationof thejoin operator
In particularthejoin operatorcouldbedynamicallymoving

betweersitesasthe join is beingprocessedSeveral posi-
tioning stratgiesmay be consideredn dynamicallymov-

ing the join operatoraround. Someof thesestratgiesare
consideredn [7] wherewe considethe morecomplex case
of ajoin treeandadaptheoperatoplacemento bandwidth
variations. Figure 7 shows the overall organizationof the
system.

Sub-queries
Servers

X
fa acce¥t o Data acce Data acce:
\+ Sele /+ Select + Select

Partial results

\ W Client
Mobile Join Op

Output Op

Figure7: Adaptive databasegueryexecution.Thejoin op-
eratormay be dynamicallyrepositionedvhile thejoin isin
progress.

5.2 Collaborative Annotation of Experimental

Data

Althoughwe have describedour tool primarily asa means
of scriptingdistributedapplicationsthereis norequirement
thattheMStreamgesideon physicallyseparatednachines.
In sectionwe describeSMAT - A SynchronoudMultimedia
AnnotationTool. SMAT wasdesignedo bepartof ascien-
tific collaboratoryfor usein aroboticarcweldingresearch
projectatNIST [13].

The scenariois as follows: Datais producedby sensors
in variouspartsof a welding systemandwelding cell con-
troller. Datafrom thesesensorscan have differentmedia
types- for example,video, audio and discretelysampled
currentand voltage. The primary functional requirement
for SMAT wasto developatool thatsupportghe capability
synchronizeand play back the capturedmulti-mediadata
aftertheweld is completeandprovidesa meango stopthe
playbackat any pointin time andenterannotations After
the annotationsessioris complete the enteredannotations
areuploadedo ansener for otherusersto view andanno-
tate. During subsequergessionsthemediaandtheannota-
tionsareplayedbackin synchronougashion.Annotations
appeaiin theannotatiorwindow correspondingo therela-
tive time at which they wereentered.

A secondaryrequirementfor SMAT wasto supportreal-
time collaborationin thetool. Using this capability users
may effectively have partial control over eachother’s tools
in orderto sharethe sameview of the multimediadata.

To meettheserequirementsSMAT wasdesignedasa con-
trol andintegrationframework thatexploits existing toolsto

play specificmediatypes. We startedwith the assumption
thateachtool to becontrolledexportsan APl or mechanism
(suchasCOM) thatpermitsit to becontrolledfrom another
process. The tools are all tied togetherusinga common
control busimplementedisingMStreams.Theideaof the
busis muchthesameastheideaof abusin computethard-
ware. Componentsaretied togetherby pluggingtheminto
the software bus in the samefashionas cardsare plugged
into a hardwarebus. The componentsn this caseareslave
processethatplay the differentmultimediafiles. In order
to usesuchan approachthe interfacesto the tools under
control mustbe madeuniform. To achieve this uniformity
we wrap a controllerscriptaroundeachtool. For example,
we canuseXANIM asatool thatplaysvideounderUNIX.
XANIM takesexternalinput via propertychangenatifica-
tionsonan XWindow Property If we usea Microsofttool,
it may export COM interfacesfor externalcontrol. In gen-
eral,eachtool mayhave its own idiosyncrasiegor external
communicationWe encapsulatéhesevia a softwaredriver
wrapperthat hidesthe communicationcomplexities from
the control layer andregistersstandardizeaallbackswith
the control layer. This is modeledafter a device driverin
an operatingsystemthat would registerread write, ioctl,
openandclosecallbacks.Thecallbacksin ourcaseinclude
a start interface,a stopinterface,a quit interface,a timer
tick interfaceand a seekinterface. Theseget called from
the controllerat appropriateimes. It is up to the driverto
communicatevith theslave tool if needbe oneachof these
calls. To enhanceusability, we needthe look andfeel of a
singletool ratherthanseveralindividualtools. For this, we
useTk window embedding. Eachtool that hasa embed-
abletop level window is embeddedn a commoncarvas.
Theoveralltool is controlledby the uservia a control GUI
that also sendseventsthroughthe control bus. The archi-
tectureis showvn in Figure8.

There are several advantagedo structuringa tool in this
fashion:

Distributed Control Eachtool is controlled by a sepa-
rate AGNI Agent that implementsits driver. The driver
reactsto eventsthat can be generatedrom arywherein

the distributed application. For example, the slider tool

can appendmessageso the controller that re-distrikutes
theseeventsas seekeventsto eachof the tool drivers. If

the multimediatools supportrandomseeks,they canre-
spondto suchseekrequestsand position their mediaap-
propriately therebygiving the ability to have bothreal-time
andmanuallycontrolledsynchronization.If we wantedto

sharethe slider, in a synchronouslycollaboratve fashion,
this seekinput simply needso originatefrom anothema-
chineratherthanthelocal slider The controlinputscould
alsocomefrom anothercollaboratve ervironmentandin-

Remote Control Input

v

<

Timer |~ Global Controller MStream
Control \l/ \l/ \l/
Demux.
Tool Tool Tool
Controller Controller| |Controller
Std. Interf. Std. Interf.| |Std. Interf.
Tool Tool Tool
Driver Driver Driver
| | |
Tool Specific * * v
Commands
Video Graph HTML
Tool Tool Tool

Start File...

Stop

1 Slider |

GRAPH VIDEO

HTML Annotations

GUI Output

Figure8: SMAT: A compositeannotatiortool with a distributedcontrolbus. Eachmediatypeis handledby a separateool
with its own driver. An MStream-baseavent-lusis usedto tie togetherthetoolsandprovide a meango selectvely export

controls.

deedwe have usedthisapproacho integratethetool in with
the Teamvave client[12].

Isolation of ComponentsEachtool runsin its own address
space.Thus,amisbehaing tool cannotbring down the ap-
plication. Failuresareeasyto isolateandfix. We canutilize
off-the-shelftoolsfor mediahandlingandannotatiorwhen-
ever suchtoolsareavailable.For example,in our Windows
NT versionof thetool, we usethe COM IWebBiowser2 in-
terfaceso Windows Exploreranddriveit asanexternaltool
to allow usto browseannotationsWe usethe COM IDis-
patch interfaceto Microsoft Word to bring up an editorto
enterannotations.

Modularity and Extensibility: As all driversexport uni-
forminterfacesit is easyto addnew mediatypes.We sim-
ply build adriverto encapsulatéheinterfaceto thetool and
plugit into the bus.

A practicalissuethatarisedn thisdesigns how to dealwith

cleanup.Whenthe maininterfaceexits or is killed the en-
tire tool includingall its componentshouldbeterminated.
To deal with this problem, we use the clientattach and
clientdetat eventsfor which the Site ControllerMStream
may registerHandlers.Thesehandlersareexecutedvhena
clientattachesr detache$rom the daemorat a givensite.
It canissuemessagew® theothertool controllersMStreams
to exit thetoolsthatthey control.

It may be a concernthat the decompositiorof the system
into processeslegradesperformance.Our experiencewas
that degradationin performancds not unacceptableThe
systemappearedo behae well even on a slow machine
(130MHz) runningwindows NT.

We arealsoworking on a datacollectionfacility that will
monitor the system gatherdataand populateftp reposito-

rieswith the dataafterexperimentsarecompleted.

6 RelatedWork

Tcl DP [10Q] is the most popularextensionfor distributed
scripting. Our first point of comparisoris with this system.
In contrastto Tcl DP thatis RPC oriented,our systemis
intendedas a platform to script distributed event-oriented
applicationsWe rely on one-way messageto supporthis.
In Tcl DP, messageare round-trip and the sendercannot
proceeduntil the recipienthascompletedprocessing.Our
systemcanalsosupportsynchronouground-trip)messages
wherethe sendetblocksuntil theappenchandleratthetar-
getcompletesexecutionandhencewe cando the kinds of
thingsTcl DP is aimedat doing. However, we expectmost
applicationsbuilt usingour systemto be one-way message
oriented. It is interestingto note thatin our system,we
canmovethesenerin responséo anRPCbeforethereply
comeshackto theclient.

Our framavork andtoolkit is relatedto several other sys-
temsthat supportmobility. In contrastto otherresearchn
Mobile Agents,ourapproachasbeento treatmobility and
Mobile Agenttechnologyasanenhancemerto distributed
scriptingratherthanasa meansof supportingdisconnected
operations Consequentlywe have concentratean typical
distributed systemsissuessuchas locationtracking, mes-
sagepassingand failure handling. This distinguishesand
separatesurwork from theotherwork in thisarea.Tcl pro-
videsan ideal platform for building mobile agentsystems
andtherehave beena few suchsystemsthat have gained
popularity AgentTcl [3] supportsa generalizedmobility
modelwheremigrationis allowedat arbitrarypointsin ex-
ecutionof the mobile code. This providesgreaterflexibility
and perhapsa more natural programmingmodel than we
provide. However, this approachsuffers from a few short-
comings.First, it requiresmodificationof the coreTcl dis-
tribution - somethingthatis difficult to keepup with over
thelong run. Unrestrictedmobility makessupportof fault
toleranceandreconfiguratiorharderto achieve. In contrast,
our systenrestrictsmobility andotherstatechangeso han-
dler boundariesand treatshandlersas atomic units of ex-
ecution. By providing sucha cleanexecutionmodel, we
simplify the systemdesignand implementationwhile in-
creasingslightly the burdenof the developerusingour sys-
tem. Previously, we haddevelopeda systemcalledSumata
thatsupportsunrestrictednobility for Java applicationsby
modificationof the Java Virtual Machine[8] and mary of
thedesigndecisiondn this systemareinfluencedby theex-
periencegainedin the Sumatraexercise. TACOMA [5] is

anotherTcl-basedmobile agentsystemthat adoptsa pro-
grammingmodelsimilar to ours. However, therearesome
basicdifferenceasoutlinedbelow.

In this work, we proposeddirect communication(reliable
messageassing)betweenMobile Agents. In our system
on_streamappend Handlers(analogousto "Agents” in

other systems) passone-way message$o eachotherre-

liably (via MStreams) ratherthan meetingto exchange
messagesusing a blackboardor other RPC-like mecha-
nisms. Cabriet. al. [1] arguethatthis is not sucha good
ideafor several reasonsvhich make sensein the context

of free-roamingdisconnectedagents. Our systemis ori-

entedtowardsbuilding re-configurablelistributedapplica-
tionsratherthansupportingfree-roamingautonomougnti-
tiesandhenceseveral of their concernsdo notapply.

Aglets[6], Voyager[2], andMole [14] are Java-basedys-
tems that follow a programmingmodel similar to ours.
However, our systemdiffersfrom thesesystemsn thefol-
lowing importantways: (1) Our designphilosophyis to in-
corporatereconfigurationinto a distributed systembuild-
ing toolkit ratherthan supportdisconnectedperationas
the fundamentaldesigngoal, (2) We have incorporateda
peerto-peerreliable, resilient messagedelivery protocol
that noneof theseother systemsoffer and (3) We have a
meansof restrictingsystemre-configuratiorandextension
using policy Handlersthat separateglobal (system-wide),
andlocal concerns.

Dynamicre-configurationof distributed systemshasbeen
consideredy HofmeisterandPurtilo [4] usinga software
bus approach. Their systemsupportsdynamicchangego

modules,geometryand structureof a distributed system.
However, failureprocessin@ndasynchronoumessagele-
livery duringreconfiguratioris not considered.

7 Conclusionsand Future Work

In this paperwe have presentedhe motivation anddesign
of a Middleware framework that usesmobility to simplify
distributed scripting. We presentedexamplesto illustrate
theuseof oursystem.Our systenmaybedownloadedrom
from http://www.antd.nist.gw/itg/agni/.

Our plansfor extendingthe Middlewareis concentratedh
threeareas. We will incorporatereliable multicastprimi-
tivesin our systemwherebyan MStreamcancommunicate
with a group of MStreams. As in the unicastcase,both
the senderandthe recipientscanbe in motion while mes-

sagesarebeingdelivered. Secondwe intendto make our
locationtrackingschemenorerobustandscalableby using
replicationand multicast. Third, we will build persistence
at the location manageiso that the systemcanbe stopped
and restartedwithout loosing all the MStreamsand data.
Finally, we intendto continuebuilding applications espe-
cially in the domainof mobile computingand distributed
testing.

8 Acknowledgments

The authorsacknavledgeand appreciatehe contributions
of Virginie Schaal(NIST), Virginie Galtier (NIST), Lau-
rent Andrey (LORIA, Fr.) and AnuragAcharya(UCSB)
to this project. We thank Kevin Mills, Mark Carsonand
CraigHuntof NIST, for readingthis paperandmakinguse-
ful suggestiongo improve its content,readabilityandpre-
sentation.

References

[1] G. Cabri,L. Leornardi,andF. Zambonelli. Coordinationin
mobile agentsystemsTechnicalReportDSI-97-24,Univer-
sita’ di Modena,October1997.

[2] Object Space Corp. Voyager
http://www.objectspace.comdyager.

[3] Robert S. Gray Agent Tcl: A flexible and secure
mobile-agent system. In Proceedingsof the Fourth
Annual Tcl/Tk Workshop - Monteey CA, July 1996.
http://www.cs.dartmouth.edw@gent/papers.html.

[4] ChristineR. HofmeisterandJamesaM. Purtilo. Dynamicre-
configurationof distributedprograms.n 11th.International
Confeenceon Distributed ComputingSystemspagess60—
571,1991.

[5] DagJohansenRobbertvan RenesseandFredB.Schnieder
An introductionto the TACOMA distributedsystem Techni-
calReport95-23,University of Tromso,Norway, Junel995.
http://wwwcs.uit.no/DOS/dcomal/tacoma.webpges

white paper

[6] Danry B. Langeand Mitsuru Oshima. Programmingand
DeployingJavaMobile Agentswith Aglets Addison-W\ésley,
1998.1SBN 0-201-32582-9.

[71 M.RanganathamnuragAcharya,andJoelSaltz. Adapting
to bandwidthvariationsin wide-arealataaccesslin Interna-
tional ConfeenceOn DistributedComputingSystemsages
498-506 May 1998.

[8] M. RanganathamAnuragAcharya,ShamikSharmaandJoel
Saltz. Network-avare mobile programs.In USENIXWnter
Tedhnical Confeence jan 1997.

[9] M. RanganatharV. SchaalV. Galtier, andD. Montgomery
Mobile streamsA middlevarefor reconfigurablelistributed
scripting.In AgentSystemandArchitectues/MobileAgents
'99 (to appear) October1999.

Brian Smith, Tibor Janosi, and Mike Perham. Tcl dp.
http://www.cs.cornell.edu/Info/Projects/zeno/Projects/Tcl-
DPhtml.

Mesquite Software.
http://www.mesquite.com.

(10]

[11] Csim-18 simulation library.

[12] Teamvave Software. Teamvave collaboratve toolkit.
http://www.teamvave.com.

[13] Michelle Steres, Wo Chang, and Amy Knutilla. Sup-
porting Manufacturing Process Analysis and Trouble
Shooting with ACTS. In IEEE 8th International
Workshops on Enabling Technolagies: Infrastructue
for Collaborative Enterprises (WETICE) , June 1999.

http://www.mel.nist.go/msidstaf/steves.mick.html.

[14] Markus Straer JoachimBaumann,and Fritz Hohl. Mole
— a Java basedmobile agentsystem. In 2nd ECOOP
Workshop on Mobile Object Systems pages 28-35,
Linz, Austria, July 1996. http://wwwinformatik.uni-

stuttgart.de/ipvr/vs/Publications/1996-strasdeps.gz.

